
Fast Motion Blur through Sample Reprojection

Micah T. Taylor
taylormt@cs.unc.edu

Abstract

The human eye and physical cameras capture visual in-
formation both spatially and temporally. The temporal
aspect leads to a blurring effect seen on moving objects.
However, computer image synthesis is limited to cre-
ating samples at discrete time points. To enhance im-
ages with motion blur effects, temporal sampling must
be added to the image rendering process. In this pa-
per, I describe a simple, novel motion blur algorithm us-
ing sample reprojection. The algorithm has high perfor-
mance compared to typical distributed motion blur ray
tracing while maintaining comparable image quality for
simple transforms.

1 Introduction

Since all physical image capture devices capture events
over some time scale, the resulting image is subject to
blurring if an object moves during the exposure. Com-
puter generated images are sampled at discrete times and
are not subject to this effect. Thus, adding motion blur
effects to computer generated images is important if re-
alistic images are to be created.

In this paper, I describe a simple technique for generat-
ing motion blur effects in rendered images. This is done
by reprojecting image space samples between two con-
secutive frames. Since the method only uses samples
that have already been rendered , the algorithm cost is
dependent on the resolution of the image. Since the cost
to compute reprojections is small, this method can gen-
erate images that approximate time sampled images with
low cost.

2 Previous Work

There has been much prior work on generating realistic
motion blur in images. These techniques can be broadly
divided based on whether they operate in world space or
as a post-process in image space.

Techniques operating in world space generally give high
quality results. However, since they rely on greater sam-
pling density, the time cost is often high. Distributed
ray tracing in the time dimension [4] produces excellent
blurring at very high costs. Another common method is
to accumulate successive render frames to estimate the
blur. Given a large number of samples, this method has
the same quality as distributed sampling, but unpleas-
ant visual artifacts arise when using few samples. Such
methods are being accelerated by recent advances in in-
teractive ray tracing [1].

To avoid the high cost of calculating new samples, many
post-process image space techniques have been pro-
posed. All such methods rely on some combining al-
gorithm to produce blurred images from little temporal
data. Line integral convolution has been used [2] to pro-
duce motion blurred images. Techniques using graphics
hardware [6] can operate in real-time, but use only a sin-
gle color frame in the blurring process and do not capture
the full range of motion of the object due to blending ar-
tifacts.

My work is most similar to the method presented by
Chen et al. [3]. They propose using depth and color
samples to create new frames. This is done by precom-
puting optimized morphing maps between frames. The
claim that simple rasterization of the point samples is too
computationally intensive is no longer the case, given
modern hardware, as shown in my work.

1



The described point rasterization is nearly identical to
sample reprojection. Sample reprojection is the process
of reusing a previously rendered sample in a new image
frame. This is done using the 3d world space location of
the sample. If such data is available, the color value of
the sample can be easily reprojected with a new camera
position. Reprojection has been used in many ray tracing
engines to decrease rendering time while retaining high
quality output. By reprojecting and post-processing the
data, old sample data can be enhanced to provide nearly
complete image frames [7]. Advanced sampling and re-
projection algorithms have been used to create very re-
sponsive rendering engines [5].

The method I propose is a pairing of image space blur-
ring with sample reprojection. Reprojection is used to
generate the high number of samples that accurate mo-
tion blur requires. However, since reprojection takes
place in image space, the actual scene geometry need
not be sampled during this process. The result is motion
blur effects that approximate high temporal sampling,
but have low cost.

3 Algorithm

The motion blur algorithm works by interpolating be-
tween camera positions and reprojecting many samples
to new positions in the frame buffer. When many sam-
ples are reprojected from different cameras, an approxi-
mation of the motion integral can be formed.

Figure 1: The vectors used in the reprojection process.

Sample Reprojection: For sample reprojection, I will
assume a simple camera and image plane described by

several vectors. Figure 1 provides a visual guide to the
reprojection process. When creating a ray from the cam-
era, I assume a precomputed top left corner of the im-
age plane, topLeft, in world space and samples at in-
tervals in world space of horzSpread horizontally and
vertSpread vertically to create the rays. Creating a ray
given an x and y position in the image plane is then:

ray = topLeft−horzSpread · x− vertSpread · y

To reproject a sample vertex, we first compute the pro-
jection vector from the camera position, then scale the
projection to bring it into the image plane. The projec-
tion from the top left corner is then used to find the hori-
zontal and vertical offsets from the corner.

proj = vertex− pos

lookScale = proj · look
scaledProj = proj

lookScale
planeProj = topLeft− scaledProj

horzScale = horzAxis · planeProj
vertScale = vertAxis · planeProj

x = horzScale
horzSpread

y = vertScale
vertSpread

Where the values are in world space as follows: pos is
the camera position, look is the normalized look direc-
tion, topLeft is the position of the top left corner of
the image plane, horzAxis and vertAxis are the basis
axis of the camera, and horzSpread and vertSpread
correspond to the respective lengths of the image plane
in world space by half of the image space lengths.

This results in image space coordinates x′ and y′ to
which the vertex may be projected, but the location must
be verified to lie in the image plane before writing.

Frame Projection: Given an image buffer, correspond-
ing vertex data, and a new camera position, a new image
frame can be generated by reprojection. Reprojecting
each sample from the original image results in a new im-
age space sample location; performing this on all sam-
ples results in a new motion frame from the given cam-
era position. Figure 2 shows an example of a scene and
several reprojected views.

When reprojecting, each sample coordinates must be
rounded and verified to lie in the image plane. If desired,
additional validation can also be performed by testing

2



(a) Initial (b) New view (c) New view (d) New view

Figure 2: The image space samples are reprojected ac-
cording to their world space coordinates.

that sample normals face the camera and that samples
pass the depth test for the new frame. When reprojecting
for motion blur, these tests are not performed due to their
cost.

Motion Blur: Motion blur effects are achieved by pro-
jecting many new frames into a image buffer. This is
done by tracking camera positions, color data, and ver-
tex positions for frames n − 1 and n. Using this data,
two reprojection cycles take place: the image buffer from
frame n− 1 is reprojected towards camera n and the im-
age buffer from frame n is reprojected towards camera
n− 1.

Figure 3: Sequence of reprojected views at interpolated
camera positions.

Each reprojection cycle is completed by interpolating
from the starting camera data to the final camera data.
The number of interpolation samples is user controlled.
For each interpolated camera position, a new color frame
is generated by reprojection.

All new frames are accumulated in an image buffer. As
samples are written to positions in the buffer, a reprojec-
tion count is kept for each location. When all cycles are
complete, the color at each position is scaled based on
the number of reprojections. This is done by accumu-
lating the counts in a buffer, then looking up the scaling
value in a precomputed table (see Figure 4).

When all cycles are complete, all frame data is shifted to
prepare for the next frame. Since the the data from the

Figure 4: The accumulated reprojection count. The color
intensity must be scaled according to this map.

current frame is combined with the current frame and
the previously rendered frame, the blur effect is between
frame n− 1 and n.

4 Results

Since this is an image space operation, it is independent
of scene complexity and shading cost, rather, it is lim-
ited by image resolution. At the end of this report, I
show examples of motion blur by distributed ray trac-
ing and frame blending. For each scene, I compare the
blur effects given a time budget of 2 seconds and 10 sec-
onds. The reference image is motion blur by distributed
ray tracing with 1000 samples per pixel. All images are
generated on a CPU using 2 threads at 2Ghz.

While the quality of the other methods increases
with larger time budgets, reprojection blurring quickly
reaches a quality limit. Nonetheless, for small time bud-
gets, reprojection motion blur provides much smoother
images. For both translation and scaling transforms, re-
projection motion blur quality is comparable to more ex-
pensive methods.

Limitations: Since no new samples are generated, view
dependent effects, or scene changes that occur between
sample points cannot be captured. Also, since the new
samples are accumulated in a single buffer, proper depth
testing cannot be performed. This can result in the pro-
jection of samples that should be occluded given a cam-
era position.

My implementation is used with a ray tracing renderer.
As such, I compare it to typical motion blur effects com-

3



puted with ray tracing. It would be interesting to com-
pare the reprojection method to other image space mo-
tion blur effects. However, useful comparison would re-
quire either a CPU implementation of the other methods,
or an implementation of reprojection blurring on graph-
ics hardware.

5 Conclusion

The presented motion blur algorithm is simple to imple-
ment and provides blur effects that correspond directly to
motion in the scene. Since the algorithm performs sam-
pling in image space, it is easy to adjust the quality/speed
tradeoff by changing the number of motion interpolation
samples used.

There are many avenues for future work. Since reprojec-
tion is very similar to rasterization, there are likely great
performance benefits to be had by implementing the al-
gorithm on graphics hardware. Also, instead of project-
ing point samples to screen space, using line integrals or
line drawing would increase visual quality. An exten-
sion of the method to allow for object motion would be
necessary before use in general rendering environments.

References

[1] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss,
J. Kautz, P. Shirley, and I. Wald. Packet-based Whit-
ted and Distribution Ray Tracing. In Proc. Graphics
Interface, May 2007.

[2] B. Cabral and L. C. Leedom. Imaging vector fields
using line integral convolution. In SIGGRAPH ’93:
Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages
263–270, New York, NY, USA, 1993. ACM.

[3] S. E. Chen and L. Williams. View interpolation for
image synthesis. In SIGGRAPH ’93: Proceedings
of the 20th annual conference on Computer graph-
ics and interactive techniques, pages 279–288, New
York, NY, USA, 1993. ACM.

[4] R. L. Cook, T. Porter, and L. Carpenter. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph.,
18(3):137–145, 1984.

[5] A. Dayal, C. Woolley, B. Watson, and D. Lue-
bke. Adaptive frameless rendering. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Courses, page 24, New
York, NY, USA, 2005. ACM.

[6] C. Shimizu, A. Shesh, and B. Chen. Hardware-
accelerated-motion-blur-generation. In University of
Minnesota Computer Science Department Technical
Report 2003-01, 2003.

[7] B. Walter, G. Drettakis, and S. Parker. Interactive
rendering using the render cache. In D. Lischinski
and G. Larson, editors, Rendering Techniques (Pro-
ceedings of the Eurographics Workshop on Render-
ing), volume 10, pages 235–246, New York, NY, Jun
1999. Springer-Verlag/Wien.

4



Translation:

(a) Frame 0 (b) Frame 1 (c) Reference blur

Distributed Frame
samples blending Reproj

2 sec

10 sec

5



Scaling:

(a) Frame 0 (b) Frame 1 (c) Reference blur

Distributed Frame
samples blending Reproj

2 sec

10 sec

6



Rotation:

(a) Frame 0 (b) Frame 1 (c) Reference blur

Distributed Frame
samples blending Reproj

2 sec

10 sec

7


